SCI ENGINEERING, INC.

EARTH • SCIENCE • SOLUTIONS

GEOTECHNICAL ENVIRONMENTAL NATURAL RESOURCES CULTURAL RESOURCES CONSTRUCTION SERVICES

October 30, 2019

Ms. Lori Ann Knutson First Assistant Attorney General for Treasurer Colorado Department of the Treasury 200 East Colfax Avenue 140 State Capitol Denver, Colorado 80203

RE: Limited Phase Two Environmental Site Assessment Report West Park Elementary (Lake County R-1) 130 West 12th Street Leadville, Colorado SCI No. 2017-2022.21 Task 002

Dear Ms. Knutson:

INTRODUCTION

SCI Engineering, Inc. (SCI) is pleased to submit this summary of Limited Phase Two Environmental Site Assessment (Limited Phase Two) of the West Park Elementary School addressed at 130 West 12th Street in Leadville, Colorado (subject site or site). A Vicinity and Topographic Map, Figure 1, of the subject site is enclosed.

SCI previously conducted a Phase One Environmental Site Assessment, dated October 11, 2019, for the subject site that identified the following recognized environmental conditions (RECs):

- The site is part of the California Gulch National Priority Listing (a.k.a. California Gulch Superfund Site). Former mining operations contributed to metals contamination in surface water, groundwater, soil, and sediment across the area.
- The site utilized an 8,000-gallon heating oil UST. The UST was reportedly closed in place. However, a closure report and soil/groundwater sampling data were not available for review. This also represents a pVEC.

The purpose of our Limited Phase Two was to evaluate for the presence of widespread impact to the soil or groundwater on the subject site as a result of these RECs. Details of SCI's activities, which were completed in accordance with our proposal, dated September 19, 2019, are outlined herein.

SCOPE OF SERVICE

Drilling Activities

On September 30, 2019 and October 1, 2019, a hollow-stem auger rig was utilized to advance borings at four locations on site. Specifically, borings B-1, B-2, B-3, and B-4 were advanced to the south, west, east, and north of the on-site UST, respectively. The borings were advanced to refusal at 6 feet in B-1, 5 feet in B-2, 15 feet at B-3, and 14 feet at B-4. Groundwater was not encountered in any of the boring locations at the time of drilling. A Boring Location Map is enclosed as Figure 2.

Soil samples were continuously collected using a 30-inch split spoon. Soil samples were screened on approximate 2-foot vertical intervals using a photo-ionization detector (PID) which is capable of detecting variations in concentrations of various organic trace gases. This sampling protocol and subsequent screening process aided in determining if soil impact was present. No PID readings were observed in B-1, B-2, or B-4. Therefore, the deepest sample from each boring was collected for analytical testing at these locations. A PID reading of 2.1 parts per million (ppm) was observed at the B-3 location. Therefore, the sample near the highest PID reading (6 to 8 feet bgs) was collected for analytical testing. Each soil sample was placed into laboratory provided containers and transported under proper chain-of-custody procedures to the laboratory in chilled containers.

Three of the borings (B-1, B-2, and B-3) consisted of gravelly sand from the surface to refusal on rock. The fourth boring (B-4) consisted of sandy lean clay from the surface to refusal on rock. Boring Logs are enclosed as Appendix A.

Following soil sampling, temporary piezometers were set in borings B-3 and B-4 in an attempt to collect groundwater samples. The temporary piezometers were constructed of Schedule 40 slotted (0.010-inch) PVC (polyvinyl chloride) for the bottom 10 feet of the piezometers with a Schedule 40 PVC riser installed above the screen to within 2 inches of the ground surface. The piezometers were dry at the time of installation. The piezometers were checked after 24 hours. However, the piezometers were still dry and were abandoned. The PVC screens and risers were removed; the boreholes were then filled with bentonite chips; and the surface was patched, as needed, at each location.

Shallow Soil Sampling

Prior to the fieldwork, SCI utilized a plan view of the subject site to place a grid across the property with the cells of the grid sized to approximately 100 feet by 100 feet. The cells over the school building or in the area of the adjoining playground which was previously sampled were excluded. The remaining cells were then labeled with numbers. SCI then utilized a random number generator to select 10 cells for sample collection. The random sampling was completed to evaluate for metals contamination due to the location of the site within the California Gulch Superfund Site. A Shallow Soil Sample Location Map is enclosed as Figure 3.

On October 2, 2019, shallow soil samples were collected from the 10 selected cells. Each sample consisted of a combination of five aliquots which were collected from the top six inches at various location across each cell. For each cell, the aliquots were mixed in a stainless-steel bowl prior to placing into laboratory provided containers. The samples were transported under proper chain-of-custody procedures to the laboratory in chilled containers. Figure 3 shows each of the aliquot locations and the overall cells from which samples were collected.

Decontamination procedures consisted of washing all sampling equipment in a solution of tap water and laboratory grade detergent (liquinox) followed by tap water rinse and double rinse with distilled water.

Analytical Testing – UST Borings

Soil samples from borings B-1 through B-4 were analyzed for benzene, toluene, ethylbenzene and xylenes (BTEX) and methyl tertiary butyl ether (MTBE) by US EPA method 8260; and total petroleum hydrocarbon (TPH)-diesel range organics (DRO). Complete laboratory results from the soil samples as well as the associated chain-of-custody documentation are contained in Appendix B. No detectable concentrations of BTEX, MTBE, or TPH-DRO were identified within any of the soil samples collected from near the UST.

Analytical Testing – Shallow Soil Samples

The shallow soil samples were analyzed for total RCRA metals plus manganese by U.S. EPA method 6010. Laboratory results of detected constituents are summarized and compared to the United States Environmental Protection Agency (EPA) Regional Screening Levels (RSLs) for resident soil and composite worker in the enclosed analytical table, Table 1 – Detected Analytical Results for Soil. The lead, cadmium, and arsenic concentrations were also compared to the acceptable concentrations established for the California Gulch Superfund Site. Complete laboratory results from the soil samples as well as the associated chain-of-custody documentation are contained in Appendix B.

As indicated on Table 1, several metals were identified at detectable concentrations. However, the concentrations were below the EPA RSLs for resident soil except for arsenic, lead, and manganese. The arsenic concentrations ranged from 9.20 milligrams per kilogram (mg/kg) at Cell 20 to 99.1 mg/kg at Cell 3 which all exceed the EPA RSL for both resident soil of 0.68 mg/kg and composite worker of 3.0 mg/kg. However, the concentrations are below the acceptable range of arsenic in soil for the California Gulch Superfund Site of 120 mg/kg to 340 mg/kg as provided in the Best Management Practices for Managing Lead, Arsenic, and Cadmium Containing Soil in Lake County, Colorado.

The lead concentrations ranged from 122 mg/kg in Cell 20 to 3,190 mg/kg in Cell 3. The identified concentrations in five of the samples (Cells 3, 5, 7, 25, and 27) were above the EPA RSL for both resident soil of 400 mg/kg and composite worker of 800 mg/kg. However, the identified concentrations were below the acceptable residential concentration of 3,500 mg/kg in soil which has been established for the California Gulch Superfund Site.

The manganese concentrations ranged from 398 mg/kg in Cell 36 to 6,960 mg/kg in Cell 3. The identified concentrations in five of the samples (Cells 3, 5, 7, 25, and 27) were above the EPA RSL for resident soil of 1,800 mg/kg. However, all identified concentrations were below the EPA RSL for composite worker of 26,000 mg/kg. An acceptable residential concentration of manganese has not been established for the California Gulch Superfund Site.

QUALITY ASSURANCE/QUALITY CONTROL

SCI reviewed the QA/QC qualifiers of the analytical report supplied by Teklab, Inc. (Teklab) for this Phase Two. No qualifiers were identified for the samples associated with the borings near the UST. However, some of the surficial soil samples which were analyzed for metals had matrix spikes outside of the control limits due to due to sample compositions. Additionally, the RPD was outside the control limits for lead. However, the matrix spike control limits for lead were not applicable due to high sample to spike ratio. Although some qualifiers were noted within the reports, SCI did not identify anything

which would have significantly altered the findings of the reports and considers the laboratory results to be in accurate representation of current site conditions.

CONCLUSIONS AND RECOMMENDATIONS

Based upon review of the analytical results, SCI makes the following conclusions:

- No detectable concentrations of BTEX, MTBE, or TPH-DRO were identified within any of the soil samples collected from near the UST.
- Several metals were identified at detectable concentrations within the shallow soil samples. However, the concentrations were below the EPA RSLs for resident soil except for arsenic, lead, and manganese.
- The identified arsenic concentrations in all the shallow soil samples were above the EPA RSL for both resident soil of 0.68 mg/kg and composite worker of 3.0 mg/kg. However, the concentrations are below the acceptable range of arsenic in residential soil for the California Gulch Superfund Site of 120 mg/kg to 340 mg/kg.
- The identified lead concentrations in five of the samples (Cells 3, 5, 7, 25, and 27) were above the EPA RSL for both resident soil of 400 mg/kg and composite worker of 800 mg/kg. However, the identified concentrations were below the acceptable residential concentration of 3,500 mg/kg in soil which has been established for the California Gulch Superfund Site.
- The identified manganese concentrations in five of the samples (Cells 3, 5, 7, 25, and 27) were above the EPA RSL for resident soil of 1,800 mg/kg. However, all identified concentrations were below the EPA RSL for composite worker of 26,000 mg/kg. An acceptable residential concentration of manganese has not been established for the California Gulch Superfund Site.

Although the identified concentrations for lead and arsenic are within the acceptable range established for the California Gulch Superfund Site, the manganese concentrations exceeded the EPA RSL for residential soil. Therefore, SCI recommends utilizing a Soil Management Plan during construction to control the potential for impacts to the construction workers and surrounding community. Furthermore, SCI recommends utilizing methods identified by the EPA to manage the contaminated soils such as the utilization of barriers/caps or removal and replacement with clean fill. It should be noted that Lake County has an established soil repository which can be utilized to dispose of impacted soil. The management of impacted soil is further discussed within the Best Management Practices for Managing Lead, Arsenic, and Cadmium Containing Soils in Lake County, Colorado which is attached to this report.

LIMITATIONS

This report has been prepared for the exclusive use of State of Colorado Department of the Treasury and Lake County R-1 School District. SCI is not responsible for independent conclusions or recommendations made by others. The services performed and opinions expressed herein are consistent with other environmental consulting firms in this geographic area. The findings of this report are valid as of the present date of the assessment.

Changes in surface and subsurface conditions of a property can occur with the passage of time, whether due to natural processes or the works of man on this or adjacent properties. In addition, changes in

applicable or appropriate standards may occur, whether they result from legislation, the broadening of knowledge, or other reasons. Accordingly, the findings of this report may be invalidated in whole or in part by changes outside our control.

No subsurface exploration can completely reveal conditions below the ground surface. Depending upon the sample spacing and frequency, every soil and groundwater condition may not be observed and some materials, stratums, or conditions present in the subsurface may not be observed. Furthermore, changes in groundwater elevation can result in changed in dissolved concentrations.

SCI should be contacted with any known or suspected variations from the conditions described herein. If further development of this site indicates the presence of hazardous, toxic, or petroleum materials, or other concerns of an environmental nature, SCI should be notified to perform a re-evaluation of the environmental conditions.

SCI appreciates the opportunity to be of continued service to you on your project. If you have any questions or require further clarification, please contact Travis Clayton at (618) 206-3049.

Respectfully,

SCI ENGINEERING, INC.

Michelh Eaton

Michelle L. Eaton, P.E. Senior Engineer

MLE/lf

Enclosures Figures Appendix A - Boring logs Appendix B - Laboratory test results

Electronic version submitted

Mr. Xan Serocki, Colorado Department of Law

N:\Mountain\PROJECT FILES\!2017/2017-2022 Colorado Department of Education\ES\21\Task 002 130 WEST 12th\Phase Two\172022.21 T002 Limited Phase Two Report.docx

DEPARTMENT OF EDUCATION WEST PARK ELEMENTARY (LAKE COUNTY R-1) 130 WEST 12TH STREET LEADVILLE, COLORADO

Table 1 – Detected Analytical Results for Soil

Constituents					Boring Loc	ation (depth)					EPA RSLs ¹	EPA RSLs1	California
	Cell 3 (Surficial)	Cell 5 (Surficial)	Cell 7 (Surficial)	Cell 20 (Surficial)	Cell 21 (Surficial)	Cell 23 (Surficial)	Cell 25 (Surficial)	Cell 27 (Surficial)	Cell 28 (Surficial)	Cell 36 (Surficial)	Resident Soil	Composite Worker	Gulch Acceptable Concentration
Arsenic	99.1	66.8	34.8	9.20	14.1	14.7	88.1	91.3	18.1	14.8	0.68	3.0	120
Barium	236	868	1,150	92.3	135	116	234	219	147	141	15,000	220,000	 ²
Cadmium	54.1	37.9	24.1	1.75	3.80	5.38	30.4	31.1	5.19	2.41	71.0	980	100
Chromium	7.31	12.3	8.08	11.1	7.74	103	8.28	12.3	12.3	14.1	120,000	1,800,000	 ²
Lead	3,190	2,930	1,540	122	240	264	1,880	2,020	287	199	400	800	3,500
Manganese	6,960	5,690	2,760	525	1,170	1,270	4,520	4,210	1,510	398	1,800	26,000	 ²
Mercury	0.468	0.298	0.504	0.067	0.126	1.42	0.175	0.171	0.111	0.087	11.0	46.0	 ²
Silver	18.9	15.7	7.72	<0.50	1.09	0.060	9.92	10.4	1.28	0.55	390	5,800	 ²

 Notes:
 All results are reported in parts per million (ppm).

 ¹United States Environmental Protection Agency (EPA) Regional Screening Levels (RSLs)

 ²No action levels established
 Bold and Shaded values exceed the composite worker RSLs Shaded values exceed the resident soil RSLs

Lake County Building & Land Use Department

BuildingLand UseCode Enforcement505 Harrison Avenue • PO Box 513 • Leadville, Colorado 80461 • (719) 486-2875 • Fax (719) 486-4179

Best Management Practices for Managing Lead, Arsenic and Cadmium Containing Soils in Lake County, Colorado

This document summarizes Best Management Practices (BMPs) for Lake County building permit applicants to consider when developing property within the boundaries of certain operable units of the California Gulch Superfund Site. Performance of these BMPs is not legally required for your building permit to be issued. This is an educational handout intended to inform the public regarding suggested procedures to consider that are recognized to be the most effective and practical means of addressing lead, arsenic and cadmium contamination in soil and preventing its distribution to other areas. Utilization of these procedures may minimize the disturbance, transfer, inhalation and ingestion of contaminated soils and may serve to reduce impacts to human health and to the Arkansas River watershed.

Introduction

Lead, arsenic and cadmium occur naturally in soil and water. Some soils are naturally high in lead, arsenic and cadmium, but may have been artificially enriched through a variety of means, principally industrialization.

Sources of lead in soil include natural background soil lead, lead-based paint, leaded gasoline, air emissions from smelters and mines, mine tailings and dust blown from tailings piles, and other various sources. Other common sources of lead exposure not related to soil include consumer products such as toys, imported candy and other household items. Lead in soil may or may not pose a health hazard, depending on several factors, including amount of lead in soil (high or low), the type of lead (metals speciation) and the pathway to human exposure. High levels of lead exposure can adversely affect human health, however the most vulnerable population is preschool age children and pregnant and nursing women.

Sources of arsenic in soil include natural background soil arsenic, air emissions from smelters and mines, mine tailings and dust blown from tailings piles, pesticide use and wood preservatives. Arsenic also has many beneficial uses but can cause human health problems if exposure is sufficient.

Sources of cadmium include natural background soil, air emissions from smelters and mines, mine tailings and dust blown from mine tailings piles and phosphate fertilizers. Exposure to high levels of cadmium can adversely affect human health.

Testing Your Soil

Applicants for a Lake County building permit may wish to determine whether the soil at the location of the project for which the permit is requested contains lead, arsenic or cadmium at levels that are deemed high by the U.S. Environmental Protection Agency. This is accomplished by soil testing through a qualified soil-testing laboratory. If soil

lead, arsenic or cadmium levels are high, this document provides a recommended course of action for both residential and commercial development.

A review of historical activities at the subject property is one way to determine whether you may want to perform further testing. Suspect areas for lead, arsenic and cadmium may include property that contains or is near mine tailings from current or former mill sites or waste rock from metal mines or is within one mile of a former smelter operation. Permit applicants may suspect soil lead contamination if the property contains an older building or other structures once painted with lead-based paints. Permit applicants may also suspect soil lead contamination if the property applicants may also suspect soil lead contamination if the property is located near roadways or high traffic routes.

The first step, once you have decided to test your soil, is to locate a soil testing laboratory to discuss requirements for soil sample size and containers before collecting samples. Generally, samples can be taken with a stainless steel or non-metallic trowel and placed in a Ziplock bag. Most laboratories have suggested soil sampling techniques.

Soil samples from suspect areas of the property or representative areas of the property may be taken. Particular attention may be paid to garden areas, areas of bare soil, distinct play areas for children, etc.

Soil sampling is not necessary in areas to be covered with asphalt pavement (two-inch minimum thickness), concrete, or at least 6 inches of clean soil cap, because these types of barriers will assist in preventing any potential exposure to humans.

The U.S. Environmental Protection Agency recommends the following as the acceptable range of lead concentration in soil for the California Gulch Superfund Site:

Residential: Less than 3500 ppm lead Commercial: Less than 6700 ppm lead Recreational: Less than 16000 ppm lead

The U.S. Environmental Protection Agency recommends the following as the acceptable range of arsenic concentration in soil for the California Gulch Superfund Site:

Residential: 120-340 ppm arsenic

The U.S. Environmental Protection Agency recommends the following as the acceptable range of cadmium concentration in soil for the California Gulch Superfund Site:

Residential: 100 ppm cadmium

How to Manage Contaminated Soil

If test results demonstrate that soil lead, arsenic or cadmium exceed the above standards, EPA recommends the following methods for managing the lead, arsenic or cadmium contaminated soil.

- 1. Place a barrier or cap on the contaminated soil by covering with 6 inches of clean topsoil, a two-inch asphalt cap or concrete cap, a building or a structure, install and maintain landscaping (grass or gravel), or restrict access. Any method that serves to break the exposure pathway is effective.
- 2. Dig up and remove soil containing elevated lead, arsenic or cadmium concentrations. Transport the contaminated soil to the designated repository location in Lake County. Replace the excavated soil with soil containing acceptable lead, arsenic and cadmium levels. Take care not to replace the soil with contaminated soil. You can ensure this by testing the replacement soil or obtaining proof of testing from the person or entity providing the soil. You may also decide to excavate soil and leave it on your property with a cap, landscaping or reuse onsite in an acceptable manner as described in #1 above.

Disclaimer

The use of this handout which outlines BMPs for lead in soil in Lake County shall not create any liability on the part of Lake County or any officer, agent or employee thereof for any claims of any kind alleged to be related to or arising from reliance on the contents of this handout.

Further Information

Further information regarding lead, arsenic and cadmium in soil can be obtained by contacting:

Colorado Department of Public Health and Environment

Kyle SandorHazardous Materials and Waste Management DivisionHMWMD-B24300 Cherry Creek Drive SouthDenver, CO 80246Telephone: 303-692-3300kyle.sandor@state.co.us

The U.S. Environmental Protection Agency

Linda Kiefer U. S. EPA Region 8 (8P-P3T) 1595 Wynkoop Street Denver, CO 80202-1129 Telephone: 303-312-6689

Kiefer.linda@EPA.gov

The Lake County Community Health Program (LCCHP) Phase 2

The LCCHP Phase 2 program serves as the institutional control for Operable Unit 9 of the California Gulch Superfund site. The LCCHP Phase 2 is a program operated by Lake County that includes lead educational services, blood lead testing for children ages 6 months to 6 years and pregnant women, including additional services to children and pregnant women with elevated levels of lead in their blood. For more information contact Colleen Nielsen, Director.

719-486-4152 <u>cnielsen@co.lake.co.us</u>

Blood Lead Program Coordinator Heidi Colley, LPN, BSN 719-486-7479 <u>hcolley@co.lake.co.us</u>

Colorado Department of Public Health and Environment Stormwater Regulations website:

http://www.cdphe.state.co.us/regulations/wqccregs/index.html

List of Soil Testing Laboratories

ACZ Laboratories, Inc. 2773 Downhill Drive Steamboat Springs, CO 80487 800-334-5493 www.acz.com sales@acz.com

Analytica Environmental Laboratories, Inc. 12189 Pennsylvania St. Thornton, CO 80241 303-469-8868 www.analyticagroup.com info@analyticagroup.com

Colorado Analytical Laboratory 240 S. Main St. PO Box 507 Brighton, CO 80601 303-659-2313 www.coloradolab.com info@coloradolab.com I,_____(print name) affirm that I have reviewed this document and have received a copy same witnessed by my signature, this _____day of _____, 20____.

Applicant

APPENDIX A

BORING LOG

			PR	OJECT	130 West 12th Street					_ Bori	NG NUN	IBER	<u> </u>	-1 So	uth
			LO	CATION	Leadville, Colorado					_ SHEE	т	1	of _		1
			DR	ILLER [Dakota Drilling	HAMMER	2			_ PROJ	IECT NO)	2017	2022	.21
•			EQ	UIPMEN	Hollow-Stem Auger Rig	ELEVATION	ON	_	-		DRILLI	ED	09	/30/1	9
		S	AMPLE							LABOR	ATORY 1	EST RE	SULT	S	
υενιΗ (π)	NUMBER	ТҮРЕ	RECOVERY (in/in)	BLOWS (per 6 in)	DESCRIPTION (UNIFIED SOIL CLASSIFICATION	N)	GRAPHIC	SEE REMARK NO	MOISTURE CONTENT (%)	DRY DENSITY (pcf)	HAND PENETROMETER (ksf)	PID READING (ppm)	LIQUID LIMIT	PLASTIC LIMIT	DEPTH (ft)
- 1- - 2-	1	CS	22/30		POORLY GRADED GRAVELLY SAND (Brown, sand and gravel was fine to coars brown, lean clay	SP):						<1.0			- - 1 - 2 -
3	2	CS	18/30									<1.0			-3 - -4 -
5-	3	CS	6/12			• • • • • • •		1				<1.0			- 5
- 7-					Refusal at 6 feet.										- 7
- 8-															- 8
9 —															- 9 -

WATER LEVEL:	REMARKS:
X NONE OBSERVED WHILE DRILLING ft WHILE DRILLING ft HILE DRILLING	1) Denotes depth at which soil sample was submitted for laboratory analysis.
ft ft DAYS AFTER DRILLING	

BORING LOG

			PR	OJECT	130 West 12th Street					_ BORI	NG NUN	IBER	E	8-2 W	est
		1	LO	CATION	Leadville, Colorado					SHEE	тт	1	of _	1	1
	\leq		DR	RILLER [Dakota Drilling	HAMME	ז			PROJ	ECT NO	D	2017-	2022	.21
			EQ	UIPMEN	Hollow-Stem Auger Rig	ELEVAT	ION _	_	-		DRILL	ED	09	/30/1	9
		S	AMPLE							LABOR	ATORY 1	EST RE	SULT	s	
υενικ (π)	NUMBER	ТҮРЕ	RECOVERY (in/in)	BLOWS (per 6 in)	DESCRIPTION (UNIFIED SOIL CLASSIFICATION	I)	GRAPHIC	SEE REMARK NO.	MOISTURE CONTENT (%)	DRY DENSITY (pcf)	PENETROMETER (ksf)	PID READING (ppm)	LIQUID LIMIT	PLASTIC LIMIT	DEPTH (ft)
- 1- - 2-	1	CS	14/30		POORLY GRADED GRAVELLY SAND (Brown, sand and gravel was fine to coars brown, lean clay	SP): e, trace						<1.0			- - 1 - 2 -
3-	2	CS	18/30												- 3
4								1				<1.0			-4
-					Refusal at 5 feet.										-
6															- 6 -
7-															- 7
8-															- 8
9-															-9
			I										1		

WATER LEVEL:	REMARKS:
X NONE OBSERVED WHILE DRILLING ft WHILE DRILLING ft HPS AFTER DRILLING	1) Denotes depth at which soil sample was submitted for laboratory analysis.
ft ft DAYS AFTER DRILLING	

BORING LOG

			РК	OJECI	130 West 12th Street						NG NUN	NBER		ວ-ວ ⊏a	asi
			LO	CATION	Leadville, Colorado					_ SHEE	т	1	of _		1
			DR	ILLER []	Dakota Drilling	HAMMER	२			_ PRO.	JECT NO	D	2017	2022	.21
			EQ	UIPMEN	Hollow-Stem Auger Rig	ELEVAT	ION _	-	-		DRILL	ED	09	/30/1	9
		S	AMPLE							LABOR	ATORY 1	EST R	SULT	s	
DEPTH (ft)	NUMBER	ТҮРЕ	RECOVERY (in/in)	BLOWS (per 6 in)	DESCRIPTION (UNIFIED SOIL CLASSIFICATION	1)	GRAPHIC	SEE REMARK NO	MOISTURE CONTENT (%)	DRY DENSITY (pcf)	HAND PENETROMETER (ksf)	PID READING (ppm)	LIQUID LIMIT	PLASTIC LIMIT	DEPTH (ft)
_	1	cs	18/24		POORLY GRADED GRAVELLY SAND (Brown, sand and gravel was fine to coarse brown, lean clay	SP): e, trace						<1.0			-
3-	2	CS	14/24				· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·					<1.0			-3
- 6	3	cs	12/24				· · · · · · · · · · · · · · · · · · ·					<1.0			- -6
_	4	cs	18/24				· · · · · · ·	1				2.1			-
9-	5	cs	18/24									<1.0			-9
-	6	CS	8/24				· · · · · · · · · · · · · · · · · · ·					<1.0			-
-	7	cs	0/24		NO RECOVERY										- 12
- 15 -	8	CS	0/12												- 15
-					Keiusai at 15 teet.										_
18 —															- 18

WATER LEVEL:	REMARKS:
X NONE OBSERVED WHILE DRILLING	1) Denotes depth at which soil sample was submitted for laboratory analysis.
ft HRS AFTER DRILLING ft DAYS AFTER DRILLING	

			РК	OJECI	130 West 12th Street						NGNU	NBER	B	-4 INO	rın
			LO	CATION	Leadville, Colorado					_ SHEE	т	1	of _	1	
	=		DR	ILLER [Dakota Drilling	HAMME	R			_ PRO.	JECT NO	D	2017-	2022	.21
			EQ	UIPMEN	Hollow-Stem Auger Rig	ELEVAT	'ION	-	-		DRILL	ED	10	/01/1	9
		s	AMPLE					÷		LABOR	ATORY 1	EST RE	SULT	s	
DEPTH (ft)	NUMBER	ТҮРЕ	RECOVERY (in/in)	BLOWS (per 6 in)	DESCRIPTION (UNIFIED SOIL CLASSIFICATION	V)	GRAPHIC	SEE REMARK NC	MOISTURE CONTENT (%)	DRY DENSITY (pcf)	HAND PENETROMETER (ksf)	PID READING (ppm)	LIQUID LIMIT	PLASTIC LIMIT	DEPTH (ft)
-	1	CS	16/24		SANDY LEAN CLAY (CL): Brown, sand to coarse	was fine						<1.0			_
3-	2	cs	14/24									<1.0			- 3
- 6	3	cs	20/24									<1.0			- 6
-	4	cs	18/24									<1.0			_
9-	5	cs	14/24									<1.0			-9
-	6	cs	8/24					1				<1.0			- 12
-	7	CS	2/24									<1.0			-
15 —					Refusal at 14 feet.										- 15 -
- 18 —															- - 18
															_

WATER LEVEL:	REMARKS:
X NONE OBSERVED WHILE DRILLING	1) Denotes depth at which soil sample was submitted for laboratory analysis.
ft WHILE DRILLING	
ft HRS AFTER DRILLING	
ft DAYS AFTER DRILLING	

APPENDIX B

http://www.teklabinc.com/

October 10, 2019

Michelle Eaton SCI Engineering, Inc. 130 Point West Boulevard St. Charles, MO 63301 TEL: (720) 544-3663 FAX: (636) 949-8269

RE: 34th Park Elementary

WorkOrder: 19100242

Dear Michelle Eaton:

TEKLAB, INC received 14 samples on 10/3/2019 9:37:00 AM for the analysis presented in the following report.

Samples are analyzed on an as received basis unless otherwise requested and documented. The sample results contained in this report relate only to the requested analytes of interest as directed on the chain of custody. NELAP accredited fields of testing are indicated by the letters NELAP under the Certification column. Unless otherwise documented within this report, Teklab Inc. analyzes samples utilizing the most current methods in compliance with 40CFR. All tests are performed in the Collinsville, IL laboratory unless otherwise noted in the Case Narrative.

All quality control criteria applicable to the test methods employed for this project have been satisfactorily met and are in accordance with NELAP except where noted. The following report shall not be reproduced, except in full, without the written approval of Teklab, Inc.

If you have any questions regarding these tests results, please feel free to call.

Sincerely,

mil Pola

Emily Pohlman Project Manager (618)344-1004 ex 44 epohlman@teklabinc.com

Report Contents

http://www.teklabinc.com/

Client: SCI Engineering, Inc.

Client Project: 34th Park Elementary

Work Order: 19100242 Report Date: 10-Oct-2019

This reporting package includes the following:

Cover Letter	1
Report Contents	2
Definitions	3
Case Narrative	4
Accreditations	5
Laboratory Results	6
Quality Control Results	20
Receiving Check List	28
Chain of Custody	Appended

Definitions

http://www.teklabinc.com/

Client: SCI Engineering, Inc.

Client Project: 34th Park Elementary

Work Order: 19100242

Report Date: 10-Oct-2019

Abbr Definition

- * Analytes on report marked with an asterisk are not NELAP accredited
- CCV Continuing calibration verification is a check of a standard to determine the state of calibration of an instrument between recalibration.
- CRQL A Client Requested Quantitation Limit is a reporting limit that varies according to customer request. The CRQL may not be less than the MDL.
- DF Dilution factor is the dilution performed during analysis only and does not take into account any dilutions made during sample preparation. The reported result is final and includes all dilution factors.
- DNI Did not ignite
- DUP Laboratory duplicate is a replicate aliquot prepared under the same laboratory conditions and independently analyzed to obtain a measure of precision.
- ICV Initial calibration verification is a check of a standard to determine the state of calibration of an instrument before sample analysis is initiated.
- IDPH IL Dept. of Public Health
- LCS Laboratory control sample is a sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes and analyzed exactly like a sample to establish intra-laboratory or analyst specific precision and bias or to assess the performance of all or a portion of the measurement system.
- LCSD Laboratory control sample duplicate is a replicate laboratory control sample that is prepared and analyzed in order to determine the precision of the approved test method. The acceptable recovery range is listed in the QC Package (provided upon request).
- MBLK Method blank is a sample of a matrix similar to the batch of associated sample (when available) that is free from the analytes of interest and is processed simultaneously with and under the same conditions as samples through all steps of the analytical procedures, and in which no target analytes or interferences should present at concentrations that impact the analytical results for sample analyses.
- MDL "The method detection limit is defined as the minimum measured concentration of a substance that can be reported with 99% confidence that the measured concentration is distinguishable from method blank results."
- MS Matrix spike is an aliquot of matrix fortified (spiked) with known quantities of specific analytes that is subjected to the entire analytical procedures in order to determine the effect of the matrix on an approved test method's recovery system. The acceptable recovery range is listed in the QC Package (provided upon request).
- MSD Matrix spike duplicate means a replicate matrix spike that is prepared and analyzed in order to determine the precision of the approved test method. The acceptable recovery range is listed in the QC Package (provided upon request).
- MW Molecular weight
- ND Not Detected at the Reporting Limit
- NELAP NELAP Accredited
 - PQL Practical quantitation limit means the lowest level that can be reliably achieved within specified limits of precision and accuracy during routine laboratory operation conditions.
 - RL The reporting limit the lowest level that the data is displayed in the final report. The reporting limit may vary according to customer request or sample dilution. The reporting limit may not be less than the MDL.
 - RPD Relative percent difference is a calculated difference between two recoveries (ie. MS/MSD). The acceptable recovery limit is listed in the QC Package (provided upon request).
 - SPK The spike is a known mass of target analyte added to a blank sample or sub-sample; used to determine recovery deficiency or for other quality control purposes.
 - Surr Surrogates are compounds which are similar to the analytes of interest in chemical composition and behavior in the analytical process, but which are not normally found in environmental samples.
 - TIC Tentatively identified compound: Analytes tentatively identified in the sample by using a library search. Only results not in the calibration standard will be reported as tentatively identified compounds. Results for tentatively identified compounds that are not present in the calibration standard, but are assigned a specific chemical name based upon the library search, are calculated using total peak areas from reconstructed ion chromatograms and a response factor of one. The nearest Internal Standard is used for the calculation. The results of any TICs must be considered estimated, and are flagged with a "T". If the estimated result is above the calibration range it is flagged "ET"

TNTC Too numerous to count (> 200 CFU)

Qualifiers

- # Unknown hydrocarbon
- C RL shown is a Client Requested Quantitation Limit
- H Holding times exceeded
- J Analyte detected below quantitation limits
- ND Not Detected at the Reporting Limit
- S Spike Recovery outside recovery limits
- X Value exceeds Maximum Contaminant Level

- B Analyte detected in associated Method Blank
- E Value above quantitation range
- I Associated internal standard was outside method criteria
- M Manual Integration used to determine area response
- R RPD outside accepted recovery limits
- T TIC(Tentatively identified compound)

Case Narrative

http://www.teklabinc.com/

Work Order: 19100242 Report Date: 10-Oct-2019

Client: SCI Engineering, Inc. Client Project: 34th Park Elementary

Cooler Receipt Temp: 6.0 °C

			Locations		
	Collinsville		Springfield		Kansas City
Address	5445 Horseshoe Lake Road	Address	3920 Pintail Dr	Address	8421 Nieman Road
	Collinsville, IL 62234-7425		Springfield, IL 62711-9415		Lenexa, KS 66214
Phone	(618) 344-1004	Phone	(217) 698-1004	Phone	(913) 541-1998
Fax	(618) 344-1005	Fax	(217) 698-1005	Fax	(913) 541-1998
Email	jhriley@teklabinc.com	Email	KKlostermann@teklabinc.com	Email	jhriley@teklabinc.com
	Collinsville Air		Chicago		
Address	5445 Horseshoe Lake Road	Address	1319 Butterfield Rd.		
	Collinsville, IL 62234-7425		Downers Grove, IL 60515		
Phone	(618) 344-1004	Phone	(630) 324-6855		
Fax	(618) 344-1005	Fax			
Email	EHurley@teklabinc.com	Email	arenner@teklabinc.com		

Accreditations

http://www.teklabinc.com/

Work Order: 19100242 Report Date: 10-Oct-2019

Client: SCI Engineering, Inc.

Client Project: 34th Park Elementary

State	Dept	Cert #	NELAP	Exp Date	Lab
Illinois	IEPA	100226	NELAP	1/31/2020	Collinsville
Kansas	KDHE	E-10374	NELAP	4/30/2020	Collinsville
Louisiana	LDEQ	166493	NELAP	6/30/2020	Collinsville
Louisiana	LDEQ	166578	NELAP	6/30/2020	Collinsville
Oklahoma	ODEQ	9978	NELAP	8/31/2020	Collinsville
Arkansas	ADEQ	88-0966		3/14/2020	Collinsville
Illinois	IDPH	17584		5/31/2021	Collinsville
Indiana	ISDH	C-IL-06		1/31/2020	Collinsville
Kentucky	KDEP	98006		12/31/2019	Collinsville
Kentucky	UST	0073		1/31/2020	Collinsville
Louisiana	LDPH	LA016		12/31/2019	Collinsville
Missouri	MDNR	930		1/31/2022	Collinsville
Missouri	MDNR	00930		5/31/2019	Collinsville
Tennessee	TDEC	04905		1/31/2020	Collinsville

http://www.teklabinc.com/

Client: SCI Engineering, Inc.

Client Project: 34th Park Elementary

Work Order: 19100242

Report Date: 10-Oct-2019

Lab ID: 19100242-001

Matrix: SOLID

Client Sample ID: B-1 South

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Batch
EPA SW846 3550C, 5035A, A	STM D2974							
Percent Moisture	*	0.1		3.0	%	1	10/04/2019 13:27	R267799
SW-846 3550B, 8270C SEMI-	VOLATILE ORGAN		IDS BY (GC/MS				
TPH-DRO (C10 - C21)	*	12.4		ND	mg/Kg-dry	1	10/04/2019 16:49	158003
Surr: 2-Fluorobiphenyl	*	23.6-99.4		71.2	%REC	1	10/04/2019 16:49	158003
Surr: Nitrobenzene-d5	*	20.6-99		73.4	%REC	1	10/04/2019 16:49	158003
Surr: p-Terphenyl-d14	*	28.1-111		84.2	%REC	1	10/04/2019 16:49	158003
SW-846 5030, 8260B, VOLAT	ILE ORGANIC COM	IPOUNDS BY	GC/MS					
Benzene	NELAP	1.0		ND	µg/Kg-dry	1	10/03/2019 13:27	157989
Ethylbenzene	NELAP	2.0		ND	µg/Kg-dry	1	10/03/2019 13:27	157989
Methyl tert-butyl ether	NELAP	2.0		ND	µg/Kg-dry	1	10/03/2019 13:27	157989
Toluene	NELAP	2.0		ND	µg/Kg-dry	1	10/03/2019 13:27	157989
Xylenes, Total	NELAP	8.1		ND	µg/Kg-dry	1	10/03/2019 13:27	157989
Surr: 1,2-Dichloroethane-d4	*	74-124		93.4	%REC	1	10/03/2019 13:27	157989
Surr: 4-Bromofluorobenzene	*	79.4-123		99.0	%REC	1	10/03/2019 13:27	157989
Surr: Dibromofluoromethane	*	89.2-112		98.6	%REC	1	10/03/2019 13:27	157989
Surr: Toluene-d8	*	85-115		97.4	%REC	1	10/03/2019 13:27	157989

http://www.teklabinc.com/

Client: SCI Engineering, Inc.

Client Project: 34th Park Elementary

Work Order: 19100242

Report Date: 10-Oct-2019

Lab ID: 19100242-002

Matrix: SOLID

Client Sample ID: B-2 West

Analyses	Certification	RL Q	ual Result	Units	DF	Date Analyzed	Batch
EPA SW846 3550C, 5035A, A	STM D2974						
Percent Moisture	*	0.1	4.7	%	1	10/04/2019 13:27	R267799
SW-846 3550B, 8270C SEMI-	VOLATILE ORGAN		S BY GC/MS				
TPH-DRO (C10 - C21)	*	12.6	ND	mg/Kg-dry	1	10/04/2019 18:21	158003
Surr: 2-Fluorobiphenyl	*	23.6-99.4	60.7	%REC	1	10/04/2019 18:21	158003
Surr: Nitrobenzene-d5	*	20.6-99	66.9	%REC	1	10/04/2019 18:21	158003
Surr: p-Terphenyl-d14	*	28.1-111	80.6	%REC	1	10/04/2019 18:21	158003
SW-846 5030, 8260B, VOLAT	ILE ORGANIC COM	IPOUNDS BY GO	C/MS				
Benzene	NELAP	0.9	ND	µg/Kg-dry	1	10/03/2019 13:55	157988
Ethylbenzene	NELAP	1.8	ND	µg/Kg-dry	1	10/03/2019 13:55	157988
Methyl tert-butyl ether	NELAP	1.8	ND	µg/Kg-dry	1	10/03/2019 13:55	157988
Toluene	NELAP	1.8	ND	µg/Kg-dry	1	10/03/2019 13:55	157988
Xylenes, Total	NELAP	7.1	ND	µg/Kg-dry	1	10/03/2019 13:55	157988
Surr: 1,2-Dichloroethane-d4	*	74-124	96.9	%REC	1	10/03/2019 13:55	157988
Surr: 4-Bromofluorobenzene	*	79.4-123	106.6	%REC	1	10/03/2019 13:55	157988
Surr: Dibromofluoromethane	*	89.2-112	100.4	%REC	1	10/03/2019 13:55	157988
Surr: Toluene-d8	*	85-115	100.5	%REC	1	10/03/2019 13:55	157988

http://www.teklabinc.com/

Client: SCI Engineering, Inc.

Client Project: 34th Park Elementary

Lab ID: 19100242-003

Matrix: SOLID

Work Order: 19100242 Report Date: 10-Oct-2019

Client Sample ID: B-3 East

Analyses	Certification	RL Q	Qual Result	Units	DF	Date Analyzed	Batch
EPA SW846 3550C, 5035A, A	STM D2974						
Percent Moisture	*	0.1	4.6	%	1	10/04/2019 13:27	R267799
SW-846 3550B, 8270C SEMI-	VOLATILE ORGAN	NIC COMPOUND	S BY GC/MS				
TPH-DRO (C10 - C21)	*	12.6	ND	mg/Kg-dry	1	10/04/2019 18:51	158003
Surr: 2-Fluorobiphenyl	*	23.6-99.4	49.1	%REC	1	10/04/2019 18:51	158003
Surr: Nitrobenzene-d5	*	20.6-99	54.3	%REC	1	10/04/2019 18:51	158003
Surr: p-Terphenyl-d14	*	28.1-111	75.8	%REC	1	10/04/2019 18:51	158003
SW-846 5030, 8260B, VOLAT	LE ORGANIC CO	POUNDS BY G	C/MS				
Benzene	NELAP	0.9	ND	µg/Kg-dry	1	10/03/2019 14:21	157988
Ethylbenzene	NELAP	1.7	ND	µg/Kg-dry	1	10/03/2019 14:21	157988
Methyl tert-butyl ether	NELAP	1.7	ND	µg/Kg-dry	1	10/03/2019 14:21	157988
Toluene	NELAP	1.7	ND	µg/Kg-dry	1	10/03/2019 14:21	157988
Xylenes, Total	NELAP	6.9	ND	µg/Kg-dry	1	10/03/2019 14:21	157988
Surr: 1,2-Dichloroethane-d4	*	74-124	96.1	%REC	1	10/03/2019 14:21	157988
Surr: 4-Bromofluorobenzene	*	79.4-123	104.5	%REC	1	10/03/2019 14:21	157988
Surr: Dibromofluoromethane	*	89.2-112	101.4	%REC	1	10/03/2019 14:21	157988
Surr: Toluene-d8	*	85-115	99.9	%REC	1	10/03/2019 14:21	157988

http://www.teklabinc.com/

Client: SCI Engineering, Inc.

Client Project: 34th Park Elementary

Work Order: 19100242

Report Date: 10-Oct-2019

Lab ID: 19100242-004

Matrix: SOLID

Client Sample ID: B-4 North

Analyses	Certification	RL	Qual Result	Units	DF	Date Analyzed	Batch
EPA SW846 3550C, 5035A, A	STM D2974						
Percent Moisture	*	0.1	5.1	%	1	10/04/2019 13:28	R267799
SW-846 3550B, 8270C SEMI-	VOLATILE ORGAN	IC COMPOUNI	DS BY GC/MS				
TPH-DRO (C10 - C21)	*	63.2	ND	mg/Kg-dry	5	10/04/2019 19:22	158003
Surr: 2-Fluorobiphenyl	*	23.6-99.4	62.1	%REC	5	10/04/2019 19:22	158003
Surr: Nitrobenzene-d5	*	20.6-99	68.3	%REC	5	10/04/2019 19:22	158003
Surr: p-Terphenyl-d14	*	28.1-111	71.5	%REC	5	10/04/2019 19:22	158003
SW-846 5030, 8260B, VOLAT	ILE ORGANIC COM	IPOUNDS BY O	GC/MS				
Benzene	NELAP	1.0	ND	µg/Kg-dry	1	10/03/2019 13:56	157989
Ethylbenzene	NELAP	1.9	ND	µg/Kg-dry	1	10/03/2019 13:56	157989
Methyl tert-butyl ether	NELAP	1.9	ND	µg/Kg-dry	1	10/03/2019 13:56	157989
Toluene	NELAP	1.9	ND	µg/Kg-dry	1	10/03/2019 13:56	157989
Xylenes, Total	NELAP	7.6	ND	µg/Kg-dry	1	10/03/2019 13:56	157989
Surr: 1,2-Dichloroethane-d4	*	74-124	90.5	%REC	1	10/03/2019 13:56	157989
Surr: 4-Bromofluorobenzene	*	79.4-123	98.7	%REC	1	10/03/2019 13:56	157989
Surr: Dibromofluoromethane	*	89.2-112	97.3	%REC	1	10/03/2019 13:56	157989
Surr: Toluene-d8	*	85-115	96.5	%REC	1	10/03/2019 13:56	157989

http://www.teklabinc.com/

Client: SCI Engineering, Inc.

Client Project: 34th Park Elementary

Lab ID: 19100242-005

Matrix: SOLID

Work Order: 19100242

Report Date: 10-Oct-2019

Client Sample ID: Cell 36

Analyses	Certification	RL	Qual Result	Units	DF	Date Analyzed	Batch
EPA SW846 3550C, 5035	A, ASTM D2974						
Percent Moisture	*	0.1	12.8	%	1	10/04/2019 13:29	R267799
SW-846 3050B, 6010B, M	ETALS BY ICP						
Arsenic	NELAP	2.27	14.8	mg/Kg-dry	1	10/08/2019 15:59	158045
Barium	NELAP	0.45	141	mg/Kg-dry	1	10/08/2019 15:59	158045
Cadmium	NELAP	0.18	2.41	mg/Kg-dry	1	10/08/2019 15:59	158045
Chromium	NELAP	0.45	14.1	mg/Kg-dry	1	10/08/2019 15:59	158045
Lead	NELAP	1.36	199	mg/Kg-dry	1	10/08/2019 15:59	158045
Manganese	NELAP	0.41	393	mg/Kg-dry	1	10/08/2019 15:59	158045
Selenium	NELAP	3.64	< 3.64	mg/Kg-dry	1	10/08/2019 15:59	158045
Silver	NELAP	0.45	0.55	mg/Kg-dry	1	10/08/2019 15:59	158045
SW-846 7471B							
Mercury	NELAP	0.011	0.087	mg/Kg-dry	1	10/04/2019 13:53	157948

http://www.teklabinc.com/

Client: SCI Engineering, Inc.

Client Project: 34th Park Elementary

Lab ID: 19100242-006

Matrix: SOLID

Work Order: 19100242

Report Date: 10-Oct-2019

Client Sample ID: Cell 28

Analyses	Certification	RL Qual	Result	Units	DF	Date Analyzed Batch
EPA SW846 3550C, 5035A,	ASTM D2974					
Percent Moisture	*	0.1	1.7	%	1	10/04/2019 13:29 R267799
SW-846 3050B, 6010B, MET	TALS BY ICP					
Arsenic	NELAP	2.50	18.1	mg/Kg-dry	1	10/08/2019 16:03 158045
Barium	NELAP	0.50	147	mg/Kg-dry	1	10/08/2019 16:03 158045
Cadmium	NELAP	0.20	5.19	mg/Kg-dry	1	10/08/2019 16:03 158045
Chromium	NELAP	0.50	12.3	mg/Kg-dry	1	10/08/2019 16:03 158045
Lead	NELAP	1.50	287	mg/Kg-dry	1	10/08/2019 16:03 158045
Manganese	NELAP	0.45	1510	mg/Kg-dry	1	10/08/2019 16:03 158045
Selenium	NELAP	4.00	< 4.00	mg/Kg-dry	1	10/08/2019 16:03 158045
Silver	NELAP	0.50	1.28	mg/Kg-dry	1	10/08/2019 16:03 158045
SW-846 7471B						
Mercury	NELAP	0.010	0.111	mg/Kg-dry	1	10/04/2019 13:55 157948

http://www.teklabinc.com/

Client: SCI Engineering, Inc.

Client Project: 34th Park Elementary

Lab ID: 19100242-007

Matrix: SOLID

Work Order: 19100242

Report Date: 10-Oct-2019

Client Sample ID: Cell 20

Analyses	Certification	RL Qual	Result	Units	DF	Date Analyzed	Batch
EPA SW846 3550C, 5035A	, ASTM D2974						
Percent Moisture	*	0.1	1.1	%	1	10/04/2019 13:30	R267799
SW-846 3050B, 6010B, ME	TALS BY ICP						
Arsenic	NELAP	2.50	9.20	mg/Kg-dry	1	10/08/2019 16:06	158045
Barium	NELAP	0.50	92.3	mg/Kg-dry	1	10/08/2019 16:06	158045
Cadmium	NELAP	0.20	1.75	mg/Kg-dry	1	10/08/2019 16:06	158045
Chromium	NELAP	0.50	11.1	mg/Kg-dry	1	10/08/2019 16:06	158045
Lead	NELAP	1.50	122	mg/Kg-dry	1	10/08/2019 16:06	158045
Manganese	NELAP	0.45	525	mg/Kg-dry	1	10/08/2019 16:06	158045
Selenium	NELAP	4.00	< 4.00	mg/Kg-dry	1	10/08/2019 16:06	158045
Silver	NELAP	0.50	< 0.50	mg/Kg-dry	1	10/08/2019 16:06	158045
SW-846 7471B							
Mercury	NELAP	0.010	0.067	mg/Kg-dry	1	10/04/2019 13:58	157948

http://www.teklabinc.com/

Client: SCI Engineering, Inc.

Client Project: 34th Park Elementary

Lab ID: 19100242-008

Matrix: SOLID

Work Order: 19100242

Report Date: 10-Oct-2019

Client Sample ID: Cell 21

Analyses	Certification	RL Qual	Result	Units	DF	Date Analyzed	Batch
EPA SW846 3550C, 5035A,	ASTM D2974						
Percent Moisture	*	0.1	2.1	%	1	10/04/2019 13:31	R267799
SW-846 3050B, 6010B, MET	TALS BY ICP						
Arsenic	NELAP	2.27	14.1	mg/Kg-dry	1	10/08/2019 16:21	158045
Barium	NELAP	0.45	135	mg/Kg-dry	1	10/08/2019 16:21	158045
Cadmium	NELAP	0.18	3.80	mg/Kg-dry	1	10/08/2019 16:21	158045
Chromium	NELAP	0.45	7.74	mg/Kg-dry	1	10/08/2019 16:21	158045
Lead	NELAP	1.36	240	mg/Kg-dry	1	10/08/2019 16:21	158045
Manganese	NELAP	0.41	1170	mg/Kg-dry	1	10/08/2019 16:21	158045
Selenium	NELAP	3.64	< 3.64	mg/Kg-dry	1	10/08/2019 16:21	158045
Silver	NELAP	0.45	1.09	mg/Kg-dry	1	10/08/2019 16:21	158045
SW-846 7471B							
Mercury	NELAP	0.010	0.126	mg/Kg-dry	1	10/04/2019 14:00	157948

http://www.teklabinc.com/

Client: SCI Engineering, Inc.

Client Project: 34th Park Elementary

Lab ID: 19100242-009

Matrix: SOLID

Work Order: 19100242

Report Date: 10-Oct-2019

Client Sample ID: Cell 23

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Batch
EPA SW846 3550C, 5035A	, ASTM D2974							
Percent Moisture	*	0.1		0.6	%	1	10/04/2019 13:31	R267799
SW-846 3050B, 6010B, ME	TALS BY ICP							
Arsenic	NELAP	2.40		14.7	mg/Kg-dry	1	10/08/2019 16:25	158045
Barium	NELAP	0.48		116	mg/Kg-dry	1	10/08/2019 16:25	158045
Cadmium	NELAP	0.19		5.38	mg/Kg-dry	1	10/08/2019 16:25	158045
Chromium	NELAP	0.48		10.3	mg/Kg-dry	1	10/08/2019 16:25	158045
Lead	NELAP	1.44	S	264	mg/Kg-dry	1	10/08/2019 16:25	158045
Manganese	NELAP	4.41	S	1270	mg/Kg-dry	10	10/10/2019 15:07	158137
Selenium	NELAP	3.85		< 3.85	mg/Kg-dry	1	10/08/2019 16:25	158045
Silver	NELAP	0.48		1.42	mg/Kg-dry	1	10/08/2019 16:25	158045
Mn- Matrix spike did not recove	er within control limits due to	sample comp	osition. Ve	erified by re-p	rep and re-ana	lysis.		
Matrix spike control limits for P	b are not applicable due to h	igh sample/sp	oike ratio.					
SW-846 7471B								
Mercury	NELAP	0.010		0.060	mg/Kg-dry	1	10/04/2019 14:02	157948

http://www.teklabinc.com/

Client: SCI Engineering, Inc.

Client Project: 34th Park Elementary

Lab ID: 19100242-010

Matrix: SOLID

Work Order: 19100242

Report Date: 10-Oct-2019

Client Sample ID: Cell 3

Analyses	Certification	RL (Qual Result	Units	DF	Date Analyzed	Batch
EPA SW846 3550C, 5035A,	ASTM D2974						
Percent Moisture	*	0.1	1.8	%	1	10/04/2019 13:32	R267799
SW-846 3050B, 6010B, ME	TALS BY ICP						
Arsenic	NELAP	2.36	99.1	mg/Kg-dry	1	10/08/2019 16:36	158045
Barium	NELAP	0.47	236	mg/Kg-dry	1	10/08/2019 16:36	158045
Cadmium	NELAP	0.19	54.1	mg/Kg-dry	1	10/08/2019 16:36	158045
Chromium	NELAP	0.47	7.31	mg/Kg-dry	1	10/08/2019 16:36	158045
Lead	NELAP	1.42	3190	mg/Kg-dry	1	10/08/2019 16:36	158045
Manganese	NELAP	4.25	6960	mg/Kg-dry	10	10/09/2019 10:57	158045
Selenium	NELAP	4.72	< 4.72	mg/Kg-dry	1	10/08/2019 16:36	158045
Silver	NELAP	0.47	18.9	mg/Kg-dry	1	10/08/2019 16:36	158045
SW-846 7471B							
Mercury	NELAP	0.010	0.468	mg/Kg-dry	1	10/04/2019 14:04	157948

http://www.teklabinc.com/

Client: SCI Engineering, Inc.

Client Project: 34th Park Elementary

Lab ID: 19100242-011

Matrix: SOLID

Work Order: 19100242

Report Date: 10-Oct-2019

Client Sample ID: Cell 5

Analyses	Certification	RL	Qual Resul	t Units	DF	Date Analyzed	Batch			
EPA SW846 3550C, 5035A, ASTM D2974										
Percent Moisture	*	0.1	3.	1 %	1	10/04/2019 13:32	R267799			
SW-846 3050B, 6010B, ME	ETALS BY ICP									
Arsenic	NELAP	2.45	66.	B mg/Kg-dry	1	10/08/2019 16:39	158045			
Barium	NELAP	0.49	86	B mg/Kg-dry	1	10/08/2019 16:39	158045			
Cadmium	NELAP	0.20	37.	9 mg/Kg-dry	1	10/08/2019 16:39	158045			
Chromium	NELAP	0.49	12.	3 mg/Kg-dry	1	10/08/2019 16:39	158045			
Lead	NELAP	1.47	293	0 mg/Kg-dry	1	10/08/2019 16:39	158045			
Manganese	NELAP	4.41	569	0 mg/Kg-dry	10	10/09/2019 11:01	158045			
Selenium	NELAP	3.92	< 3.9	2 mg/Kg-dry	1	10/08/2019 16:39	158045			
Silver	NELAP	0.49	15.	7 mg/Kg-dry	1	10/08/2019 16:39	158045			
SW-846 7471B										
Mercury	NELAP	0.010	0.29	B mg/Kg-dry	1	10/04/2019 14:11	157948			

http://www.teklabinc.com/

Client: SCI Engineering, Inc.

Client Project: 34th Park Elementary

Lab ID: 19100242-012

Matrix: SOLID

Work Order: 19100242

Report Date: 10-Oct-2019

Client Sample ID: Cell 25

Analyses	Certification	RL	Qual Re	sult	Units	DF	Date Analyzed	Batch
EPA SW846 3550C, 5035A,	, ASTM D2974							
Percent Moisture	*	0.1		1.0	%	1	10/04/2019 13:33	R267799
SW-846 3050B, 6010B, ME	TALS BY ICP							
Arsenic	NELAP	2.50		88.1	mg/Kg-dry	1	10/08/2019 16:43	158045
Barium	NELAP	0.50		234	mg/Kg-dry	1	10/08/2019 16:43	158045
Cadmium	NELAP	0.20		30.4	mg/Kg-dry	1	10/08/2019 16:43	158045
Chromium	NELAP	0.50		8.28	mg/Kg-dry	1	10/08/2019 16:43	158045
Lead	NELAP	1.50		1880	mg/Kg-dry	1	10/08/2019 16:43	158045
Manganese	NELAP	4.50		4520	mg/Kg-dry	10	10/09/2019 11:05	158045
Selenium	NELAP	4.00	<	4.00	mg/Kg-dry	1	10/08/2019 16:43	158045
Silver	NELAP	0.50		9.92	mg/Kg-dry	1	10/08/2019 16:43	158045
SW-846 7471B								
Mercury	NELAP	0.010	0	0.175	mg/Kg-dry	1	10/04/2019 14:13	157948

http://www.teklabinc.com/

Client: SCI Engineering, Inc.

Client Project: 34th Park Elementary

Lab ID: 19100242-013

Matrix: SOLID

Work Order: 19100242

Report Date: 10-Oct-2019

Client Sample ID: Cell 7

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Batch
EPA SW846 3550C, 5035A	, ASTM D2974							
Percent Moisture	*	0.1		3.4	%	1	10/09/2019 18:10	R267950
SW-846 3050B, 6010B, ME	TALS BY ICP							
Arsenic	NELAP	2.36		34.8	mg/Kg-dry	1	10/08/2019 16:47	158045
Barium	NELAP	4.72		1150	mg/Kg-dry	10	10/09/2019 11:08	158045
Cadmium	NELAP	0.19		24.1	mg/Kg-dry	1	10/08/2019 16:47	158045
Chromium	NELAP	0.47		8.08	mg/Kg-dry	1	10/08/2019 16:47	158045
Lead	NELAP	1.42		1540	mg/Kg-dry	1	10/08/2019 16:47	158045
Manganese	NELAP	4.25		2760	mg/Kg-dry	10	10/09/2019 11:08	158045
Selenium	NELAP	3.77		< 3.77	mg/Kg-dry	1	10/08/2019 16:47	158045
Silver	NELAP	0.47		7.72	mg/Kg-dry	1	10/08/2019 16:47	158045
SW-846 7471B								
Mercury	NELAP	0.020		0.504	mg/Kg-dry	2	10/04/2019 14:52	157948

http://www.teklabinc.com/

Client: SCI Engineering, Inc.

Client Project: 34th Park Elementary

Lab ID: 19100242-014

Matrix: SOLID

Work Order: 19100242

Report Date: 10-Oct-2019

Client Sample ID: Cell 27

Analyses	Certification	RL (Qual Result	Units	DF	Date Analyzed	Batch
EPA SW846 3550C, 5035A	A, ASTM D2974						
Percent Moisture	*	0.1	1.6	%	1	10/09/2019 18:11	R267950
SW-846 3050B, 6010B, ME	ETALS BY ICP						
Arsenic	NELAP	2.40	91.3	mg/Kg-dry	1	10/08/2019 16:50	158045
Barium	NELAP	0.48	219	mg/Kg-dry	1	10/08/2019 16:50	158045
Cadmium	NELAP	0.19	31.1	mg/Kg-dry	1	10/08/2019 16:50	158045
Chromium	NELAP	0.48	12.3	mg/Kg-dry	1	10/08/2019 16:50	158045
Lead	NELAP	1.44	2020	mg/Kg-dry	1	10/08/2019 16:50	158045
Manganese	NELAP	4.33	4210	mg/Kg-dry	10	10/09/2019 11:12	158045
Selenium	NELAP	3.85	< 3.85	mg/Kg-dry	1	10/08/2019 16:50	158045
Silver	NELAP	0.48	10.4	mg/Kg-dry	1	10/08/2019 16:50	158045
SW-846 7471B							
Mercury	NELAP	0.010	0.171	mg/Kg-dry	1	10/04/2019 14:18	157948

http://www.teklabinc.com/

Client: SCI Engineering, Inc.

Client Project: 34th Park Elementary

Selenium

Silver

4.00

0.50

Work Order: 19100242

Report Date: 10-Oct-2019

EPA SW846 35500	C, 5035A, AS	TM D2974								
Batch R267799	SampType:	LCS	Units %							
SampID: LCS										Date
Analyses		RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Percent Moisture		0.1	-	99.0	99.00	0	100.0	90	110	10/04/2019
Batch R267799	SampType:	LCSQC	Units %							
SampID: LCSQC										Date
Analyses		RL	Qual	Result	Snike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Percent Moisture		0.1	y uui	99.0	99.00	0	100.0	90	110	10/04/2019
Batch R267950	SampType:	LCS	Units %							
SampID: LCS										Date
Analyses		RI	Qual	Result	Snike	SPK Ref Val	%REC	Low Limit	Hiah Limit	Analyzed
Percent Moisture		0.1	Quai	99 0	99 00	0	100.0	90	110	10/09/2019
		0.1			00.00	Ŭ	100.0	00	110	10,00,2010
Batch R267950	SampType:	LCSOC	Units %							
SamplD: I CSQC										Data
Analyses		DI	Qual	Docult	Spiles	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Analyses Borcont Moisturo		KL01	Quai		Spike		100.0	00	110	10/00/2010
Fercent Moisture		0.1		55.0	99.00	0	100.0	90	110	10/09/2019
SW-846 3050B 60		S BY ICP								
Batch 158045	SampType:	MBLK	Units ma/Ka-d	rv						
SampID: MBLK-158	045			.,						Data
Analwaa		DI	Oual	Decult	Smiles	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Anaryses		KL 2.50	Quai	< 2 50	0 0700		0	-100	100	10/08/2019
Barium		0.50		< 0.50	0.3700	0	0	-100	100	10/08/2019
Cadmium		0.30		< 0.00	0.1700	0	0	-100	100	10/08/2019
Chromium		0.50		< 0.50	0.2300	0	0	-100	100	10/08/2019
Lead		1.50		< 1.50	0.5900	0	0	-100	100	10/08/2019
Manganese		0.45		< 0.45	0.1600	0	0	-100	100	10/08/2019
Selenium		4.00		< 4.00	1.680	0	0	-100	100	10/08/2019
Silver		0.50		< 0.50	0.1100	0	0	-100	100	10/08/2019
Batch 158045	SampType:	LCS	Units mg/Kg-d	ry						
SampID: LCS-1580	45									Date
Analyses		RL	Oual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Arsenic		2.50	•	48.7	50.00	0	97.5	85	115	10/08/2019
Barium		0.50		205	200.0	0	102.4	85	115	10/08/2019
Cadmium		0.20		5.01	5.000	0	100.2	85	115	10/08/2019
Chromium										
		0.50		20.1	20.00	0	100.5	85	115	10/08/2019
Lead		0.50 1.50		20.1 50.0	20.00 50.00	0 0	100.5 99.9	85 85	115 115	10/08/2019 10/08/2019

47.1 50.00

4.92 5.000

0

0

94.2

98.4

85

85

10/08/2019

10/08/2019

115

115

Client: SCI Engineering, Inc.

Client Project: 34th Park Elementary

Work Order: 19100242

Report Date: 10-Oct-2019

SW-846 3050B, 6010B,	METALS	S BY ICP								
Batch 158045 Sam	прТуре:	MS	Units mg/Kg-dı	у						
SampID: 19100242-009A	MS									Date
Analyses		RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Arsenic		2.31		58.0	46.30	14.68	93.5	75	125	10/08/2019
Barium		0.46		278	185.2	115.7	87.7	75	125	10/08/2019
Cadmium		0.19		9.48	4.630	5.385	88.5	75	125	10/08/2019
Chromium		0.46		28.9	18.52	10.29	100.3	75	125	10/08/2019
Lead		1.39	S	290	46.30	264.0	55.9	75	125	10/08/2019
Selenium		3.70		42.8	46.30	0	92.5	75	125	10/08/2019
Silver		0.46		5.94	4.630	1.423	97.5	75	125	10/08/2019
Batch 158045 Sam	прТуре:	MSD	Units mg/Kg-dı	у				RPD	Limit 20	
SampID: 19100242-009A	MSD									Date
Analyses		RL	Qual	Result	Spike	SPK Ref Val	%REC	RPD Ref	/al %RPD	Analyzed
Arsenic		2.45		61.7	49.02	14.68	95.9	57.95	6.27	10/08/2019

Arsenic	2.45		61.7	49.02	14.68	95.9	57.95	6.27	10/08/2019
Barium	0.49		289	196.1	115.7	88.2	278.1	3.66	10/08/2019
Cadmium	0.20		9.47	4.902	5.385	83.4	9.481	0.11	10/08/2019
Chromium	0.49		30.7	19.61	10.29	104.2	28.86	6.26	10/08/2019
Lead	1.47	S	274	49.02	264.0	21.0	289.9	5.53	10/08/2019
Selenium	3.92		44.0	49.02	0	89.8	42.81	2.82	10/08/2019
Silver	0.49		6.02	4.902	1.423	93.8	5.935	1.41	10/08/2019

Batch 158045 SampType: MS

Units mg/Kg-dry

SampID: 19100266-001BMS

SampID: 19100266-001BMS									Date
Analyses	RL	Qual R	esult	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Arsenic	2.27		45.7	45.45	4.302	91.0	75	125	10/08/2019
Cadmium	0.18		5.51	4.545	1.377	90.9	75	125	10/08/2019
Chromium	0.45		50.6	18.18	35.07	85.6	75	125	10/08/2019
Lead	1.36		83.2	45.45	41.34	92.1	75	125	10/08/2019
Manganese	0.41		200	45.45	159.8	88.2	75	125	10/08/2019
Silver	0.45		8.81	4.545	5.132	80.9	75	125	10/08/2019

Batch 158045 SampType: MSD SampID: 19100266-001BMSD

Units mg/Kg-dry

RPD Limit 20

ampID: 19100266-001BMSD									Date
Analyses	RL	Qual	Result	Spike	SPK Ref Val	%REC	RPD Ref Val	%RPD	Analyzed
Arsenic	2.45		49.1	49.02	4.302	91.4	45.67	7.23	10/08/2019
Cadmium	0.20		5.85	4.902	1.377	91.3	5.509	6.05	10/08/2019
Chromium	0.49		52.2	19.61	35.07	87.3	50.64	3.01	10/08/2019
Lead	1.47		84.5	49.02	41.34	88.1	83.20	1.57	10/08/2019
Manganese	0.44		203	49.02	159.8	89.0	199.9	1.75	10/08/2019
Silver	0.49		9.24	4.902	5.132	83.7	8.809	4.72	10/08/2019

Client: SCI Engineering, Inc.

Client Project: 34th Park Elementary

Work Order: 19100242

SW-846 3050B, 60	10B, METAL	S BY I	СР								
Batch 158137 SampID: MBLK-158	SampType: 3137	MBLK		Units mg/Kg-c	dry						Date
Analyses			RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Arsenic			2.50		< 2.50	0.9700	0	0	-100	100	10/10/2019
Barium			0.50		< 0.50	0.1700	0	0	-100	100	10/10/2019
Cadmium			0.20		< 0.20	0.05000	0	0	-100	100	10/10/2019
Chromium			0.50		< 0.50	0.2300	0	0	-100	100	10/10/2019
Lead			1.50		< 1.50	0.5900	0	0	-100	100	10/10/2019
Manganese			0.45		< 0.45	0.1600	0	0	-100	100	10/10/2019
Selenium			4.00		< 4.00	1.680	0	0	-100	100	10/10/2019
Silver			0.50		< 0.50	0.1100	0	0	-100	100	10/10/2019
Batch 158137	SampType:	LCS		Units mg/Kg-c	dry						
SampID: LCS-1581	37										Date
Analyses			RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Arsenic			2.50		52.0	50.00	0	104.1	85	115	10/10/2019
Barium			0.50		206	200.0	0	102.9	85	115	10/10/2019
Cadmium			0.20		5.13	5.000	0	102.6	85	115	10/10/2019
Chromium			0.50		20.3	20.00	0	101.5	85	115	10/10/2019
Lead			1.50		50.7	50.00	0	101.4	85	115	10/10/2019
Manganese			0.45		50.0	50.00	0	99.9	85	115	10/10/2019
Selenium			4.00		51.2	50.00	0	102.4	85	115	10/10/2019
Silver			0.50		4.99	5.000	0	99.8	85	115	10/10/2019
Batch 158137	SampType:	MS		Units mg/Kg-c	dry						
SampID: 19091525	-009AMS										Date
Analyses			RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Lead			1.44	S	570	48.08	547.9	46.8	75	125	10/10/2019
Batch 158137	SampType:	MSD		Units mg/Kg-c	dry				RPD	Limit 20	
SampID: 19091525	-009AMSD										Date
Analyses			RL	Oual	Result	Spike	SPK Ref Val	%REC	RPD Ref \	/al %RPD	Analyzed
Lead			1.44	S	663	48.08	547.9	239.2	570.4	15.00	10/10/2019
Batch 158137	SampType:	MS		Units mg/Kg-c	dry						
SampID: 19100242-	-009AMS										Date
Analyses			RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Manganese			4.25	S	3280	47.17	1269	4275	75	125	10/10/2019
Batch 158137	SampType:	MSD		Units mg/Kg-c	dry				RPD	Limit 20	
SampID: 19100242-	-009AMSD										Date
Analyses			RL	Qual	Result	Spike	SPK Ref Val	%REC	RPD Ref \	/al %RPD	Analyzed
Manganese			4.09	S	2700	45 45	1269	3155	3285	19.45	10/10/2019

http://www.teklabinc.com/

Client: SCI Engineering, Inc.

Client Project: 34th Park Elementary

Work Order: 19100242

SW-846 3050B, 6010B, METAL	S BY I	СР								
Batch 158137 SampType: SampID: 19100266-001BMS	MS		Units mg/Kg-c	iry						Date
Analyses		RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Barium		0.46		547	185.2	371.3	95.0	75	125	10/10/2019
Batch 158137 SampType:	MSD		Units mg/Kg-c	iry				RPD	Limit 20	
SampID: 19100266-001BMSD										Date
Analyses		RL	Qual	Result	Spike	SPK Ref Val	%REC	RPD Ref \	/al %RPD	Analyzed
Barium		0.48		547	192.3	371.3	91.2	547.2	0.11	10/10/2019
Batch 158137 SampType:	MS		Units mg/Kg-c	Iry						
SampID: 19100326-009AMS										Date
Analyses		RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzeu
Barium		0.47		592	188.7	388.4	108.2	75	125	10/10/2019
Cadmium		0.19		9.88	4.717	5.877	84.8	75	125	10/10/2019
Chromium		0.47	S	61.2	18.87	26.91	182.0	75	125	10/10/2019
Lead		1.42	S	1030	47.17	389.2	1355	75	125	10/10/2019
Batch 158137 SampType:	MSD		Units mg/Kg-c	Iry				RPD	Limit 20	
SampID: 19100326-009AMSD										Date
Analyses		RL	Qual	Result	Spike	SPK Ref Val	%REC	RPD Ref \	/al %RPD	Analyzed
Barium		0.49		573	196.1	388.4	94.2	592.5	3.31	10/10/2019
Cadmium		0.20		10.7	4.902	5.877	98.7	9.877	8.14	10/10/2019
Chromium		0.49		50.2	19.61	26.91	119.0	61.24	19.74	10/10/2019
Lead		1.47	SR	470	49.02	389.2	165.7	1028	74.45	10/10/2019
SW-846 7471B										
Batch 157948 SampType:	MBLK		Units mg/Kg							
SampID: MBLK-157948										Date
Analyses		RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Mercury		0.010		< 0.010)	.004500	0	0	-100	100	10/04/2019
Batch 157948 SampType: SampID: LCS-157948	LCS		Units mg/Kg							Date
Analyses		RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Mercury		0.010		0.252	0.2500	0	100.9	85	115	10/04/2019
Batch 157948 SampType:	MS		Units mg/Kg-c	Iry						
SampID: 19100137-001AMS										Date
Analyses		RL	Qual	Result	Snike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Mercury		0.294	2 001	8.53	7.349	0.5292	108.9	75	125	10/04/2019

http://www.teklabinc.com/

Client: SCI Engineering, Inc.

Client Project: 34th Park Elementary

Work Order: 19100242

SW-846 7471B										
Batch 157948 SampType:	MSD		Units mg/Kg-d	ry				RPD	Limit 15	
SampID: 19100137-001AMSD										Date
Analyses		RL	Qual	Result	Spike	SPK Ref Val	%REC	RPD Ref \	/al %RPD	Analyzed
Mercury		0.280		8.12	7.003	0.5292	108.4	8.531	4.97	10/04/2019
Batch 157948 SampType:	MS		Units mg/Kg-d	ry						
SampID: 19100243-001AMS										Date
Analyses		RI	Qual	Result	Snike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Mercury		0.261	Quai	7 40	6 521	0	113.4	75	125	10/04/2019
		0.201			0.021	Ũ				
Batch 157948 SampType:	MSD		Units ma/Ka-d	rv				RPD	Limit 15	
SampID: 19100243-001AMSD			5 5 5							Data
		ы	Orrel	Decult	C -: 1	SPK Rof Val	% REC			Analyzed
Analyses		KL 0.255	Quai		Spike		111 4	7 206	4 17	10/04/2010
Mercury		0.255		7.09	0.300	0	111.4	7.390	4.17	10/04/2019
SW 946 2550D 9270C SEMIN						6				
D-4-1 158003 SampType:						3				
Samplo: MRIK 158003	WIDLN		onno myrky							
Sampid. MidER-136003										Date Analyzed
Analyses		RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzeu
TPH-DRO (C10 - C21)		12.0		ND						10/04/2019
Surr: 2-Fluorobiphenyl				0.630	0.8350		75.4	54.4	109	10/04/2019
Surr: 2-Fluorobiphenyl				0.720	0.8350		86.3	46	103	10/07/2019
Surr: Nitrobenzene-d5				0.610	0.8350		73.1	49.2	110	10/04/2019
Surr: Nitrobenzene-d5				0.721	0.8350		86.3	40.7	111	10/07/2019
Surr: p-Terphenyl-d14				0.885	0.8350		105.9	57.6	123	10/07/2019
Surr: p-Terphenyl-d14				0.773	0.8350		92.6	62	125	10/04/2019
D. () (50000	1.00									
Batch 158003 SampType:	LCS		Units %REC							
Sampid. LCS-156003										Date
Analyses		RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzeu
Surr: 2-Fluorobiphenyl				0.624	0.8350		74.7	54.4	109	10/04/2019
Surr: 2-Fluorobiphenyl				0.757	0.8350		90.7	46	103	10/07/2019
Surr: Nitrobenzene-d5				0.806	0.8350		96.6	49.2	110	10/04/2019
Surr: Nitrobenzene-d5				0.719	0.8350		86.1	40.7	111	10/07/2019
Surr: p-Terphenyl-d14				0.896	0.8350		107.3	57.6	123	10/07/2019
Surr: p-Terphenyl-d14				0.790	0.8350		94.6	62	125	10/04/2019
	1 0 0 0									
Batch 158003 Samp Type:	LUSG		Units mg/Kg							
										Date
Analyses		RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
TPH-DRO (C10 - C21)		12.0		27.6	33.40	0	82.6	45.3	113	10/04/2019
Surr: 2-Fluorobiphenyl				0.654	0.8350		78.3	54.4	109	10/04/2019
Surr: Nitrobenzene-d5				0.673	0.8350		80.6	49.2	110	10/04/2019
Surr: p-Terphenyl-d14				0.784	0.8350		93.9	62	125	10/04/2019

http://www.teklabinc.com/

Client: SCI Engineering, Inc.

Client Project: 34th Park Elementary

Work Order: 19100242

Report Date: 10-Oct-2019

SW-846 3550B, 8270C SEMI-V	OLATIL	E ORG	ANIC COMPOU	NDS B	Y GC/M	S				
Batch 158003 SampType:	MS		Units mg/Kg-dr	У						
SampID: 19100242-001AMS										Date
Analyses	F	RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
TPH-DRO (C10 - C21)		12.4		26.7	34.44	0	77.4	5.69	128	10/04/2019
Surr: 2-Fluorobiphenyl				0.550	0.8609		63.9	23.6	99.4	10/04/2019
Surr: Nitrobenzene-d5				0.576	0.8609		66.9	20.6	99	10/04/2019
Surr: p-Terphenyl-d14				0.694	0.8609		80.6	28.1	111	10/04/2019
Batch 158003 SampType:	MSD		Units mg/Kg-dr	У				RPD	Limit 30	
SampID: 19100242-001AMSD										Date
Analyses	F	RL	Qual	Result	Spike	SPK Ref Val	%REC	RPD Ref V	′al %RPD	Analyzed
TPH-DRO (C10 - C21)		12.3		27.6	34.36	0	80.5	26.66	3.62	10/04/2019
Surr: 2-Fluorobiphenyl				0.579	0.8589		67.4			10/04/2019
Surr: Nitrobenzene-d5				0.633	0.8589		73.7			10/04/2019
Surr: p-Terphenyl-d14				0.699	0.8589		81.4			10/04/2019
SW-846 5030, 8260B, VOLATIL	E ORGA	ANIC CO	OMPOUNDS BY	Y GC/M	s					
Batch 157988 SampType:	MBLK		Units µg/Kg							
SampID: MBLK-Y191003A-1										Date
Analyses	E	PT	Qual	Posult	Snike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed

Analyses	RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Benzene	1.0		ND						10/03/2019
Ethylbenzene	2.0		ND						10/03/2019
Methyl tert-butyl ether	2.0		ND						10/03/2019
Toluene	2.0		ND						10/03/2019
Xylenes, Total	8.0		ND						10/03/2019
Surr: 1,2-Dichloroethane-d4			47.7	50.00		95.5	74	124	10/03/2019
Surr: 4-Bromofluorobenzene			49.4	50.00		98.9	79.4	123	10/03/2019
Surr: Dibromofluoromethane			50.5	50.00		101.1	89.2	112	10/03/2019
Surr: Toluene-d8			48.9	50.00		97.8	85	115	10/03/2019

SampType: LCSD Batch 157988

SampID: LCSD-Y191003A-1

SampID: LCSD-Y191003A-1								Date
Analyses	RL	Qual Resul	t Spike	SPK Ref Val	%REC	RPD Ref Val	%RPD	Analyzed
Benzene	1.0	48.4	50.00	0	96.7	47.89	0.96	10/03/2019
Ethylbenzene	2.0	45.7	50.00	0	91.3	45.02	1.41	10/03/2019
Methyl tert-butyl ether	2.0	55.3	50.00	0	110.6	56.19	1.60	10/03/2019
Toluene	2.0	46.0	50.00	0	92.0	45.59	0.87	10/03/2019
Xylenes, Total	8.0	138	150.0	0	91.8	135.2	1.84	10/03/2019
Surr: 1,2-Dichloroethane-d4		47.0	50.00		94.1			10/03/2019
Surr: 4-Bromofluorobenzene		48.7	50.00		97.5			10/03/2019
Surr: Dibromofluoromethane		50.1	50.00		100.2			10/03/2019
Surr: Toluene-d8		48.2	50.00		96.3			10/03/2019

Units µg/Kg

RPD Limit 40

Client: SCI Engineering, Inc.

Client Project: 34th Park Elementary

Work Order: 19100242

SW-846 5030, 8260B, VOLATI	LE ORGANIC C	OMPOUNDS B	SY GC/MS	S					
Batch 157988 SampType:	LCS	Units µg/Kg							
SampID: LCS-Y191003A-1									Date
Analyses	RL	Oual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Benzene	1.0	x	47.9	50.00	0	95.8	85.2	124	10/03/2019
Ethylbenzene	2.0		45.0	50.00	0	90.0	82.3	125	10/03/2019
Methyl tert-butyl ether	2.0		56.2	50.00	0	112.4	86.2	126	10/03/2019
Toluene	2.0		45.6	50.00	0	91.2	81	123	10/03/2019
Xylenes, Total	8.0		135	150.0	0	90.1	82.2	127	10/03/2019
Surr: 1,2-Dichloroethane-d4			47.9	50.00		95.8	74	124	10/03/2019
Surr: 4-Bromofluorobenzene			48.5	50.00		96.9	79.4	123	10/03/2019
Surr: Dibromofluoromethane			50.8	50.00		101.5	89.2	112	10/03/2019
Surr: Toluene-d8			48.0	50.00		95.9	85	115	10/03/2019
Batch 157988 SampType:	LCSGD	Units %REC					RPD) Limit 0	
SampID: LCSGD-Y191003A-1									Date
Analyses	RL	Oual	Result	Spike	SPK Ref Val	%REC	RPD Ref	/al %RPD	Analyzed
Surr: 1,2-Dichloroethane-d4		•	47.4	50.00		94.8			10/03/2019
Surr: 4-Bromofluorobenzene			49.4	50.00		98.8			10/03/2019
Surr: Dibromofluoromethane			50.4	50.00		100.8			10/03/2019
Surr: Toluene-d8			48.7	50.00		97.4			10/03/2019
Batch 157988 SampType:	LCSG	Units %REC							
SampID: LCSG-Y191003A-1									Date
Analyses	RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Surr: 1.2-Dichloroethane-d4		Q uui	47.5	50.00		95.1	74	124	10/03/2019
Surr: 4-Bromofluorobenzene			48.6	50.00		97.3	79.4	123	10/03/2019
Surr: Dibromofluoromethane			50.7	50.00		101.3	89.2	112	10/03/2019
Surr: Toluene-d8			49.3	50.00		98.6	85	115	10/03/2019
Batch 157989 SampType:	MBLK	Units µg/Kg							
SampID: MBLK-AF191003A-1									Date
Analyses	RL	Qual	Result	Snike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Benzene	1.0	Quui	ND	opike					10/03/2019
Ethylbenzene	2.0		ND						10/03/2019
Methyl tert-butyl ether	2.0		ND						10/03/2019
Toluene	2.0		ND						10/03/2019
Xylenes, Total	8.0		ND						10/03/2019
Surr: 1,2-Dichloroethane-d4			46.3	50.00		92.6	74	124	10/03/2019
Surr: 4-Bromofluorobenzene			48.2	50.00		96.3	79.4	123	10/03/2019
Surr: Dibromofluoromethane			49.8	50.00		99.5	89.2	112	10/03/2019
Surr: Toluene-d8			48.0	50.00		95.9	85	115	10/03/2019

Client: SCI Engineering, Inc.

Client Project: 34th Park Elementary

Work Order: 19100242

SW-846 5030, 8260B, VOLATI			BY GC/M	5					
Samplo: LCS-AE191003A-1	203	onits µg/kg							
Analyses	RL	Oual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Date Analyzed
Benzene	1.0	•	48.0	50.00	0	96.1	85.2	124	10/03/2019
Ethylbenzene	2.0		48.8	50.00	0	97.6	82.3	125	10/03/2019
Methyl tert-butyl ether	2.0		49.8	50.00	0	99.6	86.2	126	10/03/2019
Toluene	2.0		48.3	50.00	0	96.7	81	123	10/03/2019
Xylenes, Total	8.0		148	150.0	0	98.4	82.2	127	10/03/2019
Surr: 1,2-Dichloroethane-d4			46.1	50.00		92.2	74	124	10/03/2019
Surr: 4-Bromofluorobenzene			48.5	50.00		97.0	79.4	123	10/03/2019
Surr: Dibromofluoromethane			49.3	50.00		98.7	89.2	112	10/03/2019
Surr: Toluene-d8			48.0	50.00		96.0	85	115	10/03/2019
Batch 157989 SampType:	LCSD	Units µg/Kg					RPD	Limit 40	
SampID: LCSD-AF191003A-1									Date
Analyses	RL	Qual	Result	Spike	SPK Ref Val	%REC	RPD Ref \	/al %RPD	Analyzed
Benzene	1.0		49.2	50.00	0	98.3	48.05	2.28	10/03/2019
Ethylbenzene	2.0		49.4	50.00	0	98.7	48.81	1.10	10/03/2019
Methyl tert-butyl ether	2.0		51.8	50.00	0	103.5	49.79	3.88	10/03/2019
Toluene	2.0		48.7	50.00	0	97.4	48.33	0.72	10/03/2019
Xylenes, Total	8.0		149	150.0	0	99.5	147.6	1.10	10/03/2019
Surr: 1,2-Dichloroethane-d4			46.9	50.00		93.9			10/03/2019
Surr: 4-Bromofluorobenzene			48.1	50.00		96.2			10/03/2019
Surr: Dibromofluoromethane			49.5	50.00		98.9			10/03/2019
Surr: Toluene-d8			48.2	50.00		96.4			10/03/2019
Batch 157989 SampType:	LCSG	Units %REC							
SampID: LCSG-AF191003A-1									Date
Analyses	RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Surr: 1,2-Dichloroethane-d4			46.7	50.00		93.4	74	124	10/03/2019
Surr: 4-Bromofluorobenzene			47.8	50.00		95.5	79.4	123	10/03/2019
Surr: Dibromofluoromethane			49.3	50.00		98.5	89.2	112	10/03/2019
Surr: Toluene-d8			48.6	50.00		97.2	85	115	10/03/2019
Batch 157989 SampType:	LCSGD	Units %REC					RPD	Limit 0	
SampID: LCSGD-AF191003A-1									Date
Analyses	RL	Qual	Result	Spike	SPK Ref Val	%REC	RPD Ref \	/al %RPD	Analyzed
Surr: 1,2-Dichloroethane-d4			46.7	50.00		93.4			10/03/2019
Surr: 4-Bromofluorobenzene			48.7	50.00		97.4			10/03/2019
Surr: Dibromofluoromethane			49.3	50.00		98.6			10/03/2019
Surr: Toluene-d8			48.7	50.00		97.4			10/03/2019

Receiving Check List

http://www.teklabinc.com/

Client: SCI Engineering, Inc.

Client Project: 34th Park Elementary

 Work Order:
 19100242

 Report Date:
 10-Oct-2019

Carrier: UPS	Rece	ived By: AME)		
Completed by: On: 03-Oct-2019 Ottoor Ollouu Amber M. Dilallo	Rev 03-00	iewed by: Dn: t-2019 I	Elizabeth A. Hurley	Hurley	
Pages to follow: Chain of custody 2	Extra pages include	d 0			
Shipping container/cooler in good condition?	Yes 🗸	No	Not Present	Temp °C	6.0
Type of thermal preservation?	None	Ice 🗸	Blue Ice	Dry Ice	
Chain of custody present?	Yes 🗹	No 🗌			
Chain of custody signed when relinquished and received?	Yes 🗹	No 🗌			
Chain of custody agrees with sample labels?	Yes 🗹	No 🗌			
Samples in proper container/bottle?	Yes 🗹	No 🗌			
Sample containers intact?	Yes 🗹	No 🗌			
Sufficient sample volume for indicated test?	Yes 🗹	No 🗌			
All samples received within holding time?	Yes 🗹	No 🗌			
Reported field parameters measured:	Field	Lab	NA	\checkmark	
Container/Temp Blank temperature in compliance?	Yes 🗹	No 🗌			
When thermal preservation is required, samples are complia 0.1°C - 6.0°C, or when samples are received on ice the sam	ant with a temperature ne day as collected.	e between			
Water – at least one vial per sample has zero headspace?	Yes	No	No VOA vials	\checkmark	
Water - TOX containers have zero headspace?	Yes	No	No TOX containers	\checkmark	
Water - pH acceptable upon receipt?	Yes	No	NA		
NPDES/CWA TCN interferences checked/treated in the field?	Yes	No 🗌	NA	\checkmark	
Any No responses	must be detailed be	ow or on the	COC.		

CHAIN OF CUSTODY pg. ____ of ____ Work order #______9100242

TEKLAB, INC. 5445 Horseshoe Lake Road - Collinsville, IL 62234 - Phone: (618) 344-1004 - Fax: (618) 344-1005

Client: SCI Engineering, Inc. Address: 130 W. 12th St City / State / Zip Leadville, CO 80461 Contact: Michelle Eaton Phone: (720) 544-3663 E-Mail: meaton@sciengineering.com Fax: (720) 544-3663 Are these samples known to be involved in litigation? If yes, a surcharge will apply Yes No Are there any required reporting limits to be met on the requested analysis?. If yes, please provide limits in the comment section. Yes No										Samples on: Dice Blue ice Noice Call Control of Control																									
Project I	Name/I	Number	~	Sa	ample Collector's Name							T			MATR		RIX					IN	IDICATE ANALYSIS REQUESTED									\neg			
Pooult	<u>an</u>	Vielweber								A			Spe	Gro	98	BT																			
Xesult Xesult Standard Other	1-2 Day (100% Surcharge) (50% Surcharge)	Billir	ng Inst	ructions		HNO	NaOH	H2SO	HCI	MaD	NaHSO		queous	king Wa	Soil	Sludae	cial Was	undwat	RCRA+Mn	EX/MTBE	DRO													
Lab Use Only	Sam	ble Identification	Da	te/Time	Sampled	ES	Ű		4			× 7		9	ē			ĕ	e											_				\square	
19100242	<u>B-1</u>	South	9-	9-30-19 1300												X					X	Χ				<u> </u>			_		\square				
1002	B-2	West	9-	30-19	1430			ļ							\square	$\frac{\chi}{\chi}$					×	X			<u> </u>					\square	\dashv		\square		
603	B-3	East	9-	30-19	1630								_	_		X					×	×	L	<u> </u>	<u> </u>			_			-+			\square	
- OY	B-4	North	İO	-1-19	845								_			7					X	¥	ļ	ļ	ļ				+					\dashv	
05	(ell	36	10	2-19	945											X				χ					ļ			_	\perp	\rightarrow					
and the	Celi	28	_	1	1000					_	_			_	_	X				7			ļ	ļ		_	_		_]
<u></u>	cell	20			1020	ļ									_	X	_			۴		ļ	ļ	<u> </u>	ļ			4		-+			-+		
005	(e11	21		-	1030	<u> </u>		 								X				X			ļ		<u> </u>					\rightarrow	 		-+		
<u>ap</u> ;	Cei	1 23			1045		ļ	ļ		_	_	_				X				×	<u> </u>			<u> </u>		_			+	\rightarrow		\rightarrow		-+]
010	no cell 3 V				1100								_			X				Y															
Darr		Date/Ilme								OQUICILS LIPS									10/3/19 937																

The individual signing this agreement on behalf of the client, acknowledges that he/she has read and understands the terms and conditions of this agreement, and that he/she has the authority to sign on behalf of the client. See www.teklabinc.com for terms and conditions.

BottleOrder: 53689

CHAIN OF CUSTODY

TEKLAB, INC. 5445 Horseshoe Lake Road - Collinsville, IL 62234 - Phone: (618) 344-1004 - Fax: (618) 344-1005

Client: SCI Engineering, Inc. Address: 130 W. 12th St City / State / Zip Leadville, CO 80461 Contact: Michelle Eaton Phone: (720) 544-3663 E-Mail: meaton@sciengineering.com Fax: Image: Contact: Are these samples known to be involved in litigation? If yes, a surcharge will apply Yes Are these samples known to be hazardous? Yes No Are there any required reporting limits to be met on the requested analysis?. If yes, please provide limits in the comment section. Yes									Samples on: ICE BULLE ICE NO ICE C Preserved in: LAB FIELD FOR LAB USE ONLY Lab Notes Client Comments: groundwater samples for metals analysis will be filtered by the laboratory upon arrival EPA RSLS + Colorado Trer 1 RBSLS																							
Project 34th Park Elemen	Name/ ntary	Number	Si Da	ample Collector's Name									RI	x ა	, O				INE	DICA	TE	ANA	LYS	S RI	EQU	EST	ED					
Result	s Req] 1-2 Day	u ested (100% Surcharge) ay (50% Surcharge)	Billing Ins	tructions	# UNPR	and HNO	Typ NaOl	be of H2SO	Con HC	tain	OTHE	Aqueous	rinking Wa	Soil	Sludge	pecial Wa:	aroundwat	8 RCRA+Mn	BTEX/MTBE	DRO												4 4444
Lab Use Only	Sam	ple Identification	Date/Time	Sampled	S	ω	_	4		4			ter			ste	θŗ															
191002672	Lel	15	10-2-19	1115	_		_			╞				X				X											 			
on	(e)	1 25		1135									 	N N				N N										<u> </u>	<u> </u>			<u> </u>
013 014		1 27		1200										1 1 1							· · ·											
Relinguished By						Date	/Ti	me				<u> </u>	<u> </u>	<u> </u>		1	Re	ceiv	ed B	L				L _i				ate/T	ïme	L	L	<u> </u>
Dar	10-2-	2-19 1415								Doilalle ups 10p/14									C	ž3,	}		· · · · · · · · · · · · · · · · · · ·									

The individual signing this agreement on behalf of the client, acknowledges that he/she has read and understands the terms and conditions of this agreement, and that he/she has the authority to sign on behalf of the client. See www.teklabinc.com for terms and conditions.

BottleOrder: 53689

pg. 2 of 2 Work order # 19002/L

